Dryer Vent Cleaning

DIY Dryer Vent Cleaning vs. Professional Services

That persistent lint trap in your dryer? Its only half the story. A hidden villain lurks deeper within – a dryer vent clogged with flammable lint, reducing your dryers efficiency and posing a serious fire hazard. So, the age-old question arises: DIY dryer vent cleaning or call in the pros?


DIY seems tempting. Videos online make it look easy – a brush, a vacuum, maybe a leaf blower, and youre done, right? Well, not quite. While you can certainly tackle the accessible portion of the vent behind the dryer, reaching the entire length, especially through walls and ceilings, requires specialized tools like long, flexible rods and powerful vacuums. Improperly using these tools can actually compact the lint further, creating an even bigger problem. Plus, theres the risk of damaging the vent itself.


Professional dryer vent cleaning services, on the other hand, bring expertise and specialized equipment to the table. They can thoroughly clean the entire vent system, from the dryer to the exterior vent cap, removing all lint and debris. They also inspect the vent for damage and potential hazards, ensuring proper airflow and reducing fire risk. This peace of mind comes with a price, of course, but consider it an investment in safety and appliance longevity.


So, which route is right for you? If your vent is short and straight, and youre comfortable with basic DIY tasks, you might be able to handle the accessible portion yourself. However, for longer, more complex vents, or if youre unsure about any aspect of the process, calling a professional is the safer and ultimately more effective option. Think of it like changing your own oil – doable for some, but often worth the professional touch for the long-term health of your "machine," in this case, your home.

DIY Dryer Vent Cleaning vs. Professional Services

Costs and Frequency of Dryer Vent Cleaning

Keeping your dryer vent clean is about more than just preventing lint buildup – its about safety and saving money. But how often should you really be cleaning it, and how much should you expect to pay? Lets break it down.


The frequency of dryer vent cleaning depends on a few factors. A general rule of thumb is once a year, but households with heavy dryer usage (large families, frequent laundry) might need to do it more often, maybe every six months. Things like pets that shed a lot can also contribute to faster lint buildup. Warning signs that your vent needs attention include longer drying times, clothes that are unusually hot after a cycle, a burning smell, or lint visible around the dryer vent opening outside.


As for the cost, it typically ranges from $75 to $150 for a standard cleaning. Factors that can influence the price include the length and accessibility of the vent, as well as your location. Some companies might charge extra for removing blockages like bird nests or for dryer vent repairs. While it might be tempting to try DIY cleaning, its often best to leave it to the professionals. They have the right tools and expertise to ensure a thorough cleaning and can identify potential problems you might miss.


While the cost might seem like an added expense, consider the potential savings. A clean vent improves dryer efficiency, which means lower energy bills. More importantly, it significantly reduces the risk of dryer fires, a serious and costly hazard. So, think of regular dryer vent cleaning as a small investment in safety and peace of mind.

Top Signs Your Home Needs an Air Quality Assessment in New Smyrna Beach

The air inside your home should be clean and safe. In New Smyrna Beach, high humidity and frequent storms can create conditions that affect indoor air quality. Recognizing early signs of poor air can help protect your health and home. Here are the top signs that your home needs an air quality assessment.

1. Persistent Allergies or Respiratory Problems

If you or your family members often experience sneezing, coughing, headaches, or congestion at home, your air may contain allergens or irritants. Common indoor pollutants include dust, mold spores, and pet dander. An air quality assessment can help identify these problems and suggest effective solutions.

2. Unpleasant or Stale Odors

A constant musty, chemical, or burnt smell inside your home can signal poor air quality. Odors may come from mold, mildew, hidden leaks, or chemical off-gassing from household products. If ventilation improvements and cleaning do not fix the smell, a professional air quality assessment is necessary.

3. Visible Mold Growth

Mold often grows in areas with high humidity or water damage, common issues in coastal towns like New Smyrna Beach. If you see mold on walls, ceilings, or around windows, your home’s air could be filled with mold spores. Mold can spread quickly and worsen respiratory conditions. Immediate testing is essential to prevent further health risks.

4. Increased Dust Accumulation

If you notice heavy dust buildup on surfaces even after regular cleaning, your HVAC system may not be filtering the air correctly. Dirty ducts, clogged filters, or malfunctioning ventilation can distribute dust throughout your home. An air quality inspection will help pinpoint the cause and recommend fixes.

5. High Humidity Levels

Indoor humidity levels should stay between 30% and 50%. If your home feels damp or sticky, or if you see condensation on windows and walls, your air may be too humid. High humidity can lead to mold, bacteria, and dust mite growth. Measuring humidity levels through an air quality assessment can guide you toward the right dehumidification steps.

6. Frequent Headaches or Fatigue

Poor indoor air quality can cause unexplained fatigue, dizziness, and headaches. Pollutants like carbon monoxide, volatile organic compounds (VOCs), and airborne chemicals can contribute to these symptoms. If you feel better when you leave your home, your indoor air may be the cause. Testing can locate these pollutants and guide safe improvements.

7. Recent Home Renovations

If you recently remodeled your home, painted walls, installed new flooring, or added furniture, your air could contain VOCs and other harmful chemicals. Materials like paint, adhesives, and carpet often release gases that can linger. A professional assessment will help detect these emissions and recommend ways to improve ventilation.

8. Old HVAC Systems

Heating and cooling systems that are more than 10 years old may not effectively filter air. Worn-out systems can collect and distribute contaminants instead of removing them. If your HVAC system is aging and you notice signs like uneven airflow, dust, or strange odors, a full air quality inspection is a smart next step.

9. Water Damage History

Homes that have experienced leaks, floods, or plumbing issues may have hidden mold and mildew. Even if the surfaces appear dry, moisture trapped behind walls or under floors can continue to affect air quality. If your home has had past water damage, an air assessment is important to make sure the space is truly safe.

10. Healthier Home Goals

If you are committed to creating a healthier living environment, a proactive air quality assessment can provide a clear starting point. Many homeowners in New Smyrna Beach prioritize cleaner indoor air to support wellness goals. Identifying pollutants early allows for easy improvements like better filtration, air purification systems, and humidity control.

Why Choose Florida Fresh-Air?

Florida Fresh-Air specializes in indoor air quality solutions for homes in New Smyrna Beach and nearby areas. Our team uses advanced testing tools to measure pollutants, humidity, and airflow. We provide detailed reports and straightforward recommendations. Our mission is to help you breathe cleaner, safer air every day.

An air quality assessment from Florida Fresh-Air can detect hidden problems and offer simple, practical solutions. We work with local homeowners who want to create healthier homes for their families. Our services are fast, accurate, and customized to your home’s specific needs.

Schedule Your Air Quality Assessment Today

If you notice any of these warning signs, do not wait. Poor indoor air quality can impact your health and comfort. Florida Fresh-Air is ready to help you find and fix air problems before they get worse.

What is Dryer Vent Cleaning?

Dryer vent cleaning might seem like just another chore, but its actually a crucial part of home maintenance that significantly impacts both safety and efficiency.. We all love the convenience of a clothes dryer, but behind the scenes, lint, the byproduct of drying our clothes, is constantly accumulating in the dryer vent.

What is Dryer Vent Cleaning?

Posted by on 2025-04-28

What is the Importance of Dryer Vent Cleaning?

We all know laundry is a never-ending chore, but keeping your dryer vent clean isnt just about efficiency, its about protecting your familys health.. A clogged dryer vent doesnt just slow down drying time, it creates a breeding ground for problems that can impact your well-being. One of the biggest health risks is the increased chance of fire.

What is the Importance of Dryer Vent Cleaning?

Posted by on 2025-04-28

How to Spot a Clogged Dryer Vent Before It Becomes a Fire Hazard

Establishing a regular dryer vent cleaning schedule is absolutely crucial for preventing dryer vent fires.. Think of it like changing the oil in your car – you dont wait until the engine seizes up to do it.

How to Spot a Clogged Dryer Vent Before It Becomes a Fire Hazard

Posted by on 2025-04-28

Preventing Future Dryer Vent Clogs

Preventing future dryer vent clogs is crucial not just for efficient drying, but also for fire safety. A clogged vent makes your dryer work harder, wasting energy and shortening its lifespan. More importantly, the lint trapped in a clogged vent is highly flammable and a leading cause of house fires. So, while having your dryer vent professionally cleaned is essential, taking steps to prevent future clogs is just as important.


One of the simplest things you can do is clean your lint filter after every single load. I know, its easy to forget, but that seemingly small amount of lint adds up quickly. Think of it as a small investment of time that pays off big in the long run. Beyond the lint filter, you can also use a vacuum hose with a crevice attachment to clean the area where the lint trap sits. This will help catch any stray lint that escapes the filter.


Another helpful tip is to avoid using dryer sheets. While they might make your clothes feel softer, they leave a residue that can build up in your vent, contributing to clogs. Consider switching to wool dryer balls or liquid fabric softener as alternatives. If you absolutely must use dryer sheets, choose the low-lint variety.


Finally, pay attention to the outside vent. Make sure the vent flap opens and closes freely. Check for any blockages like bird nests or debris and remove them promptly. You can also use a brush specifically designed for cleaning dryer vents to periodically remove lint buildup from inside the vent itself. Just be careful not to damage the vent while cleaning.


By taking these simple steps, you can significantly reduce the risk of future dryer vent clogs, saving you money, energy, and most importantly, protecting your home from fire. Its a bit of effort, but the peace of mind is well worth it.

Signs You Need Professional Help

Is your dryer taking forever to dry clothes? Do your clothes feel unusually hot after a cycle? Is there a burning smell lingering in your laundry room? These are all telltale signs that you might need professional help with your dryer vent cleaning. While cleaning the lint trap after each load is important, it doesnt catch everything. Over time, lint builds up deep within the vent, creating a fire hazard and reducing your dryers efficiency.


You might think you can tackle this yourself with a brush and some elbow grease, and for minor build-up, you might be right. But if youre experiencing the issues mentioned above, chances are the problem is more significant than you can handle. Professionals have specialized tools, like powerful vacuums and rotating brushes, to reach deep into the vent and remove all the lint and debris. They can also inspect the vent for damage or blockages, like bird nests or other obstructions, that you might miss.


Another sign you need professional help is if youve never had your dryer vent cleaned. Most manufacturers recommend cleaning at least once a year, and more frequently if you have a large family or use your dryer often. Ignoring this recommendation can lead to significant lint buildup and increase the risk of a dryer fire. Think of it like getting your cars oil changed – regular maintenance prevents bigger problems down the road.


Finally, if youre unsure about the state of your dryer vent, its always best to err on the side of caution and call a professional. The cost of a cleaning is far less than the cost of repairing or replacing a dryer damaged by fire, or worse, dealing with the aftermath of a house fire. So, dont wait until its too late. If you notice any of these signs, pick up the phone and schedule a dryer vent cleaning today. Youll have peace of mind knowing your home is safer and your dryer is running efficiently.

The word duct is derived from the Latin word for led/leading. It may refer to:

  • Duct (anatomy), various ducts in anatomy and physiology
  • Duct (HVAC), for transfer of air between spaces in a structure
  • Duct tape, a kind of adhesive tape
  • Ducted fan, motor for aircraft
  • Electrical bus duct, a metal enclosure for busbars
  • Duct (industrial exhaust), industrial exhaust duct system designed for low pressure-pneumatic convey of gas, fumes, dusts, shavings, and other pollutants from works space to atmosphere after cleaning and removal of contaminants
  • Atmospheric duct, a horizontal layer in the lower atmosphere in which the vertical refractive index gradients are such that radio signals (a) are guided or ducted, (b) tend to follow the curvature of the Earth, and (c) experience less attenuation in the ducts than they would if the ducts were not present
  • Surface duct, a sound propagation phenomenon at sea
  • Duct Publishing, an imprint of the German group VDM Publishing devoted to the reproduction of Wikipedia content
  • Dispatchable Unit Control Table (DUCT) in z/Architecture
  • Flexible Ducting

See also

[edit]

A chimney is an architectural ventilation structure made of masonry, clay or metal that isolates hot toxic exhaust gases or smoke produced by a boiler, stove, furnace, incinerator, or fireplace from human living areas. Chimneys are typically vertical, or as near as possible to vertical, to ensure that the gases flow smoothly, drawing air into the combustion in what is known as the stack, or chimney effect. The space inside a chimney is called the flue. Chimneys are adjacent to large industrial refineries, fossil fuel combustion facilities or part of buildings, steam locomotives and ships.

In the United States, the term smokestack industry refers to the environmental impacts of burning fossil fuels by industrial society, including the electric industry during its earliest history. The term smokestack (colloquially, stack) is also used when referring to locomotive chimneys or ship chimneys, and the term funnel can also be used.[1][2]

The height of a chimney influences its ability to transfer flue gases to the external environment via stack effect. Additionally, the dispersion of pollutants at higher altitudes can reduce their impact on the immediate surroundings. The dispersion of pollutants over a greater area can reduce their concentrations and facilitate compliance with regulatory limits.

History

[edit]

Industrial chimney use dates to the Romans, who drew smoke from their bakeries with tubes embedded in the walls. However, domestic chimneys first appeared in large dwellings in northern Europe in the 12th century. The earliest surviving example of an English chimney is at the keep of Conisbrough Castle in Yorkshire, which dates from 1185 AD,[3] but they did not become common in houses until the 16th and 17th centuries.[4] Smoke hoods were an early method of collecting the smoke into a chimney. These were typically much wider than modern chimneys and started relatively high above the fire, meaning more heat could escape into the room. Because the air going up the shaft was cooler, these could be made of less fireproof materials. Another step in the development of chimneys was the use of built-in ovens which allowed the household to bake at home. Industrial chimneys became common in the late 18th century.

Chimneys in ordinary dwellings were first built of wood and plaster or mud. Since then chimneys have traditionally been built of brick or stone, both in small and large buildings. Early chimneys were of simple brick construction. Later chimneys were constructed by placing the bricks around tile liners. To control downdrafts, venting caps (often called chimney pots) with a variety of designs are sometimes placed on the top of chimneys.

In the 18th and 19th centuries, the methods used to extract lead from its ore produced large amounts of toxic fumes. In the north of England, long near-horizontal chimneys were built, often more than 3 km (2 mi) long, which typically terminated in a short vertical chimney in a remote location where the fumes would cause less harm. Lead and silver deposits formed on the inside of these long chimneys, and periodically workers would be sent along the chimneys to scrape off these valuable deposits.[5]

Construction

[edit]
Chimney in NED University

As a result of the limited ability to handle transverse loads with brick, chimneys in houses were often built in a "stack", with a fireplace on each floor of the house sharing a single chimney, often with such a stack at the front and back of the house. Today's central heating systems have made chimney placement less critical, and the use of non-structural gas vent pipe allows a flue gas conduit to be installed around obstructions and through walls.

Chimney in North London
Flue

Most modern high-efficiency heating appliances do not require a chimney. Such appliances are generally installed near an external wall, and a noncombustible wall thimble[clarification needed] allows a vent pipe to run directly through the external wall.

On a pitched roof where a chimney penetrates a roof, flashing is used to seal up the joints. The down-slope piece is called an apron, the sides receive step flashing and a cricket is used to divert water around the upper side of the chimney underneath the flashing.[6]

Industrial chimneys are commonly referred to as flue-gas stacks and are generally external structures, as opposed to those built into the wall of a building. They are generally located adjacent to a steam-generating boiler or industrial furnace and the gases are carried to them with ductwork. Today the use of reinforced concrete has almost entirely replaced brick as a structural element in the construction of industrial chimneys. Refractory bricks are often used as a lining, particularly if the type of fuel being burned generates flue gases containing acids. Modern industrial chimneys sometimes consist of a concrete windshield with a number of flues on the inside.

The 300 m (980 ft) high steam plant chimney at the Secunda CTL's synthetic fuel plant in Secunda, South Africa consists of a 26 m (85 ft) diameter windshield with four 4.6 metre diameter concrete flues which are lined with refractory bricks built on rings of corbels spaced at 10 metre intervals. The reinforced concrete can be cast by conventional formwork or sliding formwork. The height is to ensure the pollutants are dispersed over a wider area to meet legal or other safety requirements.

Residential flue liners

[edit]

A flue liner is a secondary barrier in a chimney that protects the masonry from the acidic products of combustion, helps prevent flue gas from entering the house, and reduces the size of an oversized flue. Since the 1950s, building codes in many locations require newly built chimneys to have a flue liner. Chimneys built without a liner can usually have a liner added, but the type of liner needs to match the type of appliance it services. Flue liners may be clay or concrete tile, metal, or poured in place concrete.

Clay tile flue liners are very common in the United States, although it is the only liner that does not meet Underwriters Laboratories 1777 approval and frequently they have problems such as cracked tiles and improper installation.[7] Clay tiles are usually about 2 feet (0.61 m) long, available in various sizes and shapes, and are installed in new construction as the chimney is built. A refractory cement is used between each tile.

Metal liners may be stainless steel, aluminum, or galvanized iron and may be flexible or rigid pipes. Stainless steel is made in several types and thicknesses. Type 304 is used with firewood, wood pellet fuel, and non-condensing oil appliances, types 316 and 321 with coal, and type AL 29-4C is used with high efficiency condensing gas appliances. Stainless steel liners must have a cap and be insulated if they service solid fuel appliances, but following the manufacturer's instructions carefully.[7] Aluminum and galvanized steel chimneys are known as class A and class B chimneys. Class A are either an insulated, double wall stainless steel pipe or triple wall, air-insulated pipe often known by its genericized trade name Metalbestos. Class B are uninsulated double wall pipes often called B-vent, and are only used to vent non-condensing gas appliances. These may have an aluminum inside layer and galvanized steel outside layer.

Concrete flue liners are like clay liners but are made of a refractory cement and are more durable than the clay liners.

Poured in place concrete liners are made by pouring special concrete into the existing chimney with a form. These liners are highly durable, work with any heating appliance, and can reinforce a weak chimney, but they are irreversible.

Chimney pots, caps, and tops

[edit]

A chimney pot is placed on top of the chimney to expand the length of the chimney inexpensively, and to improve the chimney's draft. A chimney with more than one pot on it indicates that multiple fireplaces on different floors share the chimney.

A cowl is placed on top of the chimney to prevent birds and other animals from nesting in the chimney. They often feature a rain guard to prevent rain or snow from going down the chimney. A metal wire mesh is often used as a spark arrestor to minimize burning debris from rising out of the chimney and making it onto the roof. Although the masonry inside the chimney can absorb a large amount of moisture which later evaporates, rainwater can collect at the base of the chimney. Sometimes weep holes are placed at the bottom of the chimney to drain out collected water.

A chimney cowl or wind directional cap is a helmet-shaped chimney cap that rotates to align with the wind and prevent a downdraft of smoke and wind down the chimney.

An H-style cap is a chimney top constructed from chimney pipes shaped like the letter H. It is an age-old method of regulating draft in situations where prevailing winds or turbulences cause downdraft and back-puffing. Although the H cap has a distinct advantage over most other downdraft caps, it fell out of favor because of its bulky design. It is found mostly in marine use but has been regaining popularity due to its energy-saving functionality. The H-cap stabilizes the draft rather than increasing it. Other downdraft caps are based on the Venturi effect, solving downdraft problems by increasing the updraft constantly resulting in much higher fuel consumption.

A chimney damper is a metal plate that can be positioned to close off the chimney when not in use and prevent outside air from entering the interior space, and can be opened to permit hot gases to exhaust when a fire is burning. A top damper or cap damper is a metal spring door placed at the top of the chimney with a long metal chain that allows one to open and close the damper from the fireplace. A throat damper is a metal plate at the base of the chimney, just above the firebox, that can be opened and closed by a lever, gear, or chain to seal off the fireplace from the chimney. The advantage of a top damper is the tight weatherproof seal that it provides when closed, which prevents cold outside air from flowing down the chimney and into the living space—a feature that can rarely be matched by the metal-on-metal seal afforded by a throat damper. Additionally, because the throat damper is subjected to intense heat from the fire directly below, it is common for the metal to become warped over time, thus further degrading the ability of the throat damper to seal. However, the advantage of a throat damper is that it seals off the living space from the air mass in the chimney, which, especially for chimneys positioned on an outside of wall of the home, is generally very cold. It is possible in practice to use both a top damper and a throat damper to obtain the benefits of both. The two top damper designs currently on the market are the Lyemance (pivoting door) and the Lock Top (translating door).

In the late Middle Ages in Western Europe the design of stepped gables arose to allow maintenance access to the chimney top, especially for tall structures such as castles and great manor houses.

Chimney draught or draft

[edit]

When coal, oil, natural gas, wood, or any other fuel is combusted in a stove, oven, fireplace, hot water boiler, or industrial furnace, the hot combustion product gases that are formed are called flue gases. Those gases are generally exhausted to the ambient outside air through chimneys or industrial flue-gas stacks (sometimes referred to as smokestacks).

The combustion flue gases inside the chimneys or stacks are much hotter than the ambient outside air and therefore less dense than the ambient air. That causes the bottom of the vertical column of hot flue gas to have a lower pressure than the pressure at the bottom of a corresponding column of outside air. That higher pressure outside the chimney is the driving force that moves the required combustion air into the combustion zone and also moves the flue gas up and out of the chimney. That movement or flow of combustion air and flue gas is called "natural draught/draft", "natural ventilation", "chimney effect", or "stack effect". The taller the stack, the more draught or draft is created. There can be cases of diminishing returns: if a stack is overly tall in relation to the heat being sent out of the stack, the flue gases may cool before reaching the top of the chimney. This condition can result in poor drafting, and in the case of wood burning appliances, the cooling of the gases before emission can cause creosote to condense near the top of the chimney. The creosote can restrict the exit of flue gases and may pose a fire hazard.

Designing chimneys and stacks to provide the correct amount of natural draft involves a number of design factors, many of which require iterative trial-and-error methods.

As a "first guess" approximation, the following equation can be used to estimate the natural draught/draft flow rate by assuming that the molecular mass (i.e., molecular weight) of the flue gas and the external air are equal and that the frictional pressure and heat losses are negligible: where:

  • Q = chimney draught/draft flow rate, m3/s
  • A = cross-sectional area of chimney, m2 (assuming it has a constant cross-section)
  • C = discharge coefficient (usually taken to be from 0.65 to 0.70)
  • g = gravitational acceleration, 9.807 m/s2
  • H = height of chimney, m
  • Ti = average temperature inside the chimney, K
  • Te = external air temperature, K.

Combining two flows into chimney: At+Af<A, where At=7.1 inch2 is the minimum required flow area from water heater tank and Af=19.6 inch2 is the minimum flow area from a furnace of a central heating system.

Draft hood

[edit]

Gas fired appliances must have a draft hood to cool combustion products entering the chimney and prevent updrafts or downdrafts.[8][9][10]

Maintenance and problems

[edit]

A characteristic problem of chimneys is they develop deposits of creosote on the walls of the structure when used with wood as a fuel. Deposits of this substance can interfere with the airflow and more importantly, they are combustible and can cause dangerous chimney fires if the deposits ignite in the chimney.

Heaters that burn natural gas drastically reduce the amount of creosote buildup due to natural gas burning much cleaner and more efficiently than traditional solid fuels. While in most cases there is no need to clean a gas chimney on an annual basis that does not mean that other parts of the chimney cannot fall into disrepair. Disconnected or loose chimney fittings caused by corrosion over time can pose serious dangers for residents due to leakage of carbon monoxide into the home.[11] Thus, it is recommended—and in some countries even mandatory—that chimneys be inspected annually and cleaned on a regular basis to prevent these problems. The workers who perform this task are called chimney sweeps or steeplejacks. This work used to be done largely by child labour and, as such, features in Victorian literature. In the Middle Ages in some parts of Europe, a stepped gable design was developed, partly to provide access to chimneys without use of ladders.

Masonry (brick) chimneys have also proven to be particularly prone to crumbling during earthquakes. Government housing authorities in cities prone to earthquakes such as San Francisco, Los Angeles, and San Diego now recommend building new homes with stud-framed chimneys around a metal flue. Bracing or strapping old masonry chimneys has not proven to be very effective in preventing damage or injury from earthquakes. It is now possible to buy "faux-brick" facades to cover these modern chimney structures.

Other potential problems include:

  • "spalling" brick, in which moisture seeps into the brick and then freezes, cracking and flaking the brick and loosening mortar seals.
  • shifting foundations, which may degrade integrity of chimney masonry
  • nesting or infestation by unwanted animals such as squirrels, racoons, or chimney swifts
  • chimney leaks
  • drafting issues, which may allow smoke inside building[12]
  • issues with fireplace or heating appliance may cause unwanted degradation or hazards to chimney

Chimneys of special interest

[edit]

Chimneys with observation decks

[edit]

Several chimneys with observation decks were built. The following possibly incomplete list shows them.

Name Country Town Coordinates Year of completion Total height Height of observation deck Remarks
Chimney of Beitou Refuse Incineration Plant Taiwan Teipei 25°06′29″N 121°29′58″E / 25.108043°N 121.499384°E / 25.108043; 121.499384 (Chimney of Beitou Refuse Incineration Plant) 2000 150 m (492 ft) 116 m (381 ft) revolving restaurant in a height of 120 metres (394 ft)
Radio City Tower United Kingdom Liverpool   53°24′23″N 2°58′55″W / 53.406332°N 2.982002°W / 53.406332; -2.982002 (Radio City Tower) 1971 148 m (486 ft) 124.7 m (409 ft) chimney for the heating system of a nearby mall
Large Chimney of Warsaw Refuse Incineration Plant Poland Warsaw   52°15′41″N 21°06′18″E / 52.261448°N 21.105072°E / 52.261448; 21.105072 (Large Chimney of Warsaw Refuse Incineration Plant) 2024 72 m (236 ft)   observation deck only accessible at guided tours through the facility
Bernard Brewery Chimney Czech Humpolec   49°32′23″N 15°21′36″E / 49.539786°N 15.360043°E / 49.539786; 15.360043 (Bernard Brewery Chimney)   40.7 m (134 ft) 33 m (108 ft) observation deck added in 2020/21
Dům DÄ›tí a Mládeže v ModÅ™anech Czech Prague   50°00′44″N 14°24′49″E / 50.012154°N 14.413657°E / 50.012154; 14.413657 (Dům DÄ›tí a Mládeže v ModÅ™anech) 2004 15 m (49 ft) 12 m (39 ft) observation platform on chimney of the roof of a youth centre
Chimney of Zenner Heating Building Germany Berlin   52°29′17″N 13°28′38″E / 52.488097°N 13.477282°E / 52.488097; 13.477282 (Chimney of Zenner Heating Building) 1955 15 m (49 ft) 12 m (39 ft) perhaps never in use as observation tower

Chimneys used as electricity pylon

[edit]

At several thermal power stations at least one smokestack is used as electricity pylon. The following possibly incomplete list shows them.

Country City Coordinates Name Height Year of construction Voltage Remarks
Germany Gelsenkirchen   51°36′02″N 7°00′16″E / 51.600623°N 7.004573°E / 51.600623; 7.004573 (Scholven Power Station, Chimney for Units B, C, D and E) Scholven Power Station, Chimney for Units B, C, D and E 300 m   220 kV  
Belarus Novolukoml   54°40′45″N 29°08′09″E / 54.679048°N 29.135925°E / 54.679048; 29.135925 (Lukoml Power Station, Chimney 1) Lukoml Power Station, Chimney 1 250 m 1969 330 kV  
Belarus Novolukoml   54°40′48″N 29°08′07″E / 54.679941°N 29.135259°E / 54.679941; 29.135259 (Lukoml Power Station, Chimney 2) Lukoml Power Station, Chimney 2 250 m 1971 330 kV  
Belarus Novolukoml   54°40′53″N 29°08′04″E / 54.681290°N 29.134428°E / 54.681290; 29.134428 (Lukoml Power Station, Chimney 3) Lukoml Power Station, Chimney 3 250 m 1973 330 kV  
Lithuania Elektrenai   54°46′17″N 24°38′50″E / 54.771463°N 24.647291°E / 54.771463; 24.647291 (ElektrÄ—nai Power Plant, Chimney 1) ElektrÄ—nai Power Plant, Chimney 1 150 m   330 kV dismantled
Lithuania Elektrenai   54°46′12″N 24°38′48″E / 54.770110°N 24.646765°E / 54.770110; 24.646765 (ElektrÄ—nai Power Plant, Chimney 2) ElektrÄ—nai Power Plant, Chimney 2 250 m   330 kV dismantled
Moldova Dnestrovsc   46°37′40″N 29°56′23″E / 46.627864°N 29.939691°E / 46.627864; 29.939691 (Cuciurgan power station, Chimney 1) Cuciurgan power station, Chimney 1 180 m 1964 110 kV  
Moldova Dnestrovsc   46°37′44″N 29°56′23″E / 46.628880°N 29.939622°E / 46.628880; 29.939622 (Cuciurgan power station, Chimney 2) Cuciurgan power station, Chimney 2 180 m 1966 330 kV  
Moldova Dnestrovsc   46°37′49″N 29°56′23″E / 46.630199°N 29.939622°E / 46.630199; 29.939622 (Cuciurgan power station, Chimney 3) Cuciurgan power station, Chimney 3 180 m 1971 330 kV  
Russia Archangelsk   64°34′29″N 40°34′24″E / 64.574788°N 40.573261°E / 64.574788; 40.573261 (Archangelsk Cogeneration Plant, Chimney 1) Archangelsk Cogeneration Plant, Chimney 1 170 m   220 kV  
Russia Saint Petersburg   59°58′14″N 30°22′35″E / 59.970595°N 30.376425°E / 59.970595; 30.376425 (Vyborgskaya Cogenaration Plant, Chimney 1) Vyborgskaya Cogenaration Plant, Chimney 1 120 m   110 kV  
Russia Tobolsk   58°14′44″N 68°26′43″E / 58.245439°N 68.445224°E / 58.245439; 68.445224 (Tobolsk Cogeneration Plant, Chimney 1) TEC Tobolsk, Chimney 1 240 m 1980 110 kV  
Russia Tobolsk   58°14′45″N 68°26′55″E / 58.245781°N 68.448590°E / 58.245781; 68.448590 (Tobolsk Cogeneration Plant, Chimney 2) TEC Tobolsk, Chimney 2 270 m 1986 220 kV  
Russia Kashira   54°51′24″N 38°15′23″E / 54.856639°N 38.256428°E / 54.856639; 38.256428 (Kashira Power Plant, Chimney 1) Kashira Power Plant, Chimney 1 250 m 1966 220 kV  
Russia Energetik   51°45′12″N 58°48′09″E / 51.753324°N 58.802583°E / 51.753324; 58.802583 (Iriklinskaya Power Station, Chimney 1) Iriklinskaya Power Station, Chimney 1 180 m   220 kV  
Russia Energetik   51°45′12″N 58°48′14″E / 51.753453°N 58.803983°E / 51.753453; 58.803983 (Iriklinskaya Power Station, Chimney 2) Iriklinskaya Power Station, Chimney 2 180 m   220 kV  
Russia Energetik   51°45′13″N 58°48′22″E / 51.753483°N 58.806183°E / 51.753483; 58.806183 (Iriklinskaya Power Station, Chimney 3) Iriklinskaya Power Station, Chimney 3 250 m   500 kV  
Russia Konakovo   56°44′23″N 36°46′22″E / 56.739703°N 36.772833°E / 56.739703; 36.772833 (Konakovo Power Station, Chimney 1) Konakovo Power Station, Chimney 1 180 m 1964 220 kV  
Russia Konakovo   56°44′26″N 36°46′20″E / 56.740627°N 36.772308°E / 56.740627; 36.772308 (Konakovo Power Station, Chimney 2) Konakovo Power Station, Chimney 2 180 m 1966 220 kV  
Russia Koryazhma   61°18′09″N 47°07′13″E / 61.302456°N 47.120396°E / 61.302456; 47.120396 (Chimney 1 of Cogenaration Plant 1 of Kotlas Pulp and Paper Mill) Chimney 1 of Cogenaration Plant 1 of Kotlas Pulp and Paper Mill 105 m 1961 220 kV  
Ukraine Burshtyn   49°12′27″N 24°40′03″E / 49.207578°N 24.667450°E / 49.207578; 24.667450 (Burshtyn Power Station, Chimney 1) Burshtyn Power Station, Chimney 1 180 m 1965 330 kV  
Ukraine Burshtyn   49°12′31″N 24°39′57″E / 49.208595°N 24.665921°E / 49.208595; 24.665921 (Burshtyn Power Station, Chimney 2) Burshtyn Power Station, Chimney 2 250 m 1966 330 kV  
Ukraine Burshtyn   49°12′34″N 24°39′54″E / 49.209334°N 24.664918°E / 49.209334; 24.664918 (Burshtyn Power Station, Chimney 3) Burshtyn Power Station, Chimney 3 250 m 1966 330 kV  
Ukraine Trypillia   50°08′01″N 30°44′52″E / 50.133591°N 30.747659°E / 50.133591; 30.747659 (Trypillia Power Station, Chimney 1) Trypillia Power Station, Chimney 1 180 m 1968 330 kV  
Ukraine Trypillia   50°08′00″N 30°44′44″E / 50.133239°N 30.745553°E / 50.133239; 30.745553 (Trypillia Power Station, Chimney 2) Trypillia Power Station, Chimney 2 180 m 1972 330 kV  

Nearly all this structures exist in an area, which was once part of the Soviet Union. Although this use has the disadvantage that conductor ropes may corrode faster due to the exhaust gases, one can find such structures also sometimes in countries not influenced by the former Soviet Union. An example herefore is one chimney of Scholven Power Plant in Gelsenkirchen, which carries one circuit of an outgoing 220 kV-line.

Chimneys used as water tower

[edit]

Chimneys can also carry a water tank on their structure. This combination has the advantage that the warm smoke running through the chimney prevents the water in the tank from freezing. Before World War II such structures were not uncommon, especially in countries influenced by Germany.

Chimneys used as radio tower

[edit]

Chimneys can carry antennas for radio relay services, cell phone transmissions, FM-radio and TV on their structure. Also long wire antennas for mediumwave transmissions can be fixed at chimneys. In all cases it had to be considered that these objects can easily corrode especially when placed near the exhaust. Sometimes chimneys were converted into radio towers and are not useable as ventilation structure any more.

Chimneys used for advertising

[edit]

As chimneys are often the tallest part of a factory, they offer the possibility as advertising billboard either by writing the name of the company to which they belong on the shaft or by installing advertisement boards on their structure.

Cooling tower used as an industrial chimney

[edit]

At some power stations, which are equipped with plants for the removal of sulfur dioxide and nitrogen oxides, it is possible to use the cooling tower as a chimney. Such cooling towers can be seen in Germany at the Großkrotzenburg Power Station and at the Rostock Power Station. At power stations that are not equipped for removing sulfur dioxide, such usage of cooling towers could result in serious corrosion problems which are not easy to prevent.

See also

[edit]

References

[edit]
  1. ^ C.F. Saunders (1923), The Southern Sierras of California
  2. ^ "Jules Verne (1872), Around the World in Eighty Days". Retrieved 2006-07-30.
  3. ^ James Burke, Connections (Little, Brown and Co.) 1978/1995, ISBN 0-316-11672-6, p. 159
  4. ^ Sparrow, Walter Shaw. The English house: how to judge its periods and styles. London: Eveleigh Nash, 1908. 85–86.
  5. ^ "Lead Mining". The Northern Echo. Newsquest Media Group. Retrieved 10 April 2012.
  6. ^ Roofing, flashing & waterproofing. Newtown, CT: Taunton Press, 2005. 43–50.
  7. ^ a b Bliss, Stephen, ed.. Troubleshooting guide to residential construction: the diagnosis and prevention of common building problems. Richmond, VT: Builderburg Group, 1997. 197. Print.
  8. ^ "Field Installation of Draft Hoods" (PDF). A.O. Smith Water Products Company. 2009. Retrieved January 6, 2016.
  9. ^ "Guide to Draft Hoods on Gas Fired Heating Equipment". InspectApedia.com. 2017. Retrieved January 6, 2016.
  10. ^ Reuben Saltzman (September 24, 2013). "Water Heater Backdrafting, Part 1 of 2: Why it Matters and What to Look For". Structure Tech. Retrieved January 6, 2016.
  11. ^ Chimney Problems and Warnings Signs
  12. ^ "Chimney Airflow Problems". 8 June 2022.
[edit]

 

Industrial exhaust ducts are pipe systems that connect hoods to industrial chimneys through other components of exhaust systems like fans, collectors, etc. Ducts are low-pressure pneumatic conveyors to convey dust, particles, shavings, fumes, or chemical hazardous components from air in the vicinity to a shop floor or any other specific locations like tanks, sanding machines, or laboratory hoods. Ducts can be fabricated from a variety of materials including carbon steel, stainless steel, PVC, and fiberglass. [1] They can be fabricated through rolling (preferable for ducts of 12" or more in diameter) or extruded (for ducts up to 18").[2]

HVAC systems do not include this category of industrial application, namely exhaust systems. A distinction from HVAC system ducts is that the fluid (air) conveyed through the duct system may not be homogeneous. An industrial exhaust duct system is primarily a pneumatic conveying system and is basically governed by laws of flow of fluids.[3]

Fluid flow

[edit]

The conveying fluid that flows through the duct system is air. Air transports materials from the hood to a destination. It is also instrumental in capturing the material into the flow system. Air is a compressible fluid, but for engineering calculations, air is considered as incompressible as a simplification, without any significant errors.

Design

[edit]

Process design of exhaust system will include

  • Identification of contaminants, their density and size
  • Deciding of air flow
  • Sizing of the ductwork
  • Calculation of resistance
  • Finalizing the capacity of blower, etc.[4]

The goal is to keep contaminants out using minimum airflow. It is estimated that increase in an inch wg[clarification needed] of static pressure can add a few thousands of dollars to the operation cost per annum.

See also

[edit]

References

[edit]
  1. ^ Duct Work Assembly Archived 2020-02-24 at the Wayback Machine U.S. Bellows, (retrieved May 2012)
  2. ^ KCH Engineered Systems
  3. ^ [1] Archived 2015-09-19 at the Wayback Machine ASHRAE Technical Committee 5.2 - Duct Design
  4. ^ [2] Archived 2017-02-20 at the Wayback Machine Industrial Duct System Design Fundamentals

Driving Directions in


Driving Directions From Digital Audio Devices to
Driving Directions From Dream Maker Bath & Kitchen to
Driving Directions From SodKat to
Driving Directions From The George Home Team at LPT Realty to
Driving Directions From Hot Off the Press Promotions to
Driving Directions From Light of Life Ministries to
Driving Directions From essintawings to
Driving Directions From Platinum Builders to
Driving Directions From World's Most Famous Beach to
Driving Directions From Winterhaven Park to
Driving Directions From Old Fort Park to
View GBP

Driving Directions in Volusia County


Driving Directions From 29.061706404676, -81.0326684 to
Driving Directions From 29.088816727424, -80.984617022747 to
Driving Directions From 29.028157958573, -81.060352726571 to
Driving Directions From 29.033014057381, -81.024829630788 to
Driving Directions From 29.028151084356, -81.004962489051 to
Driving Directions From 29.049136304765, -81.084644568707 to
Driving Directions From 28.999209222387, -81.059645266341 to
Driving Directions From 29.056986724021, -81.064189694206 to
Driving Directions From 29.001405461926, -81.00524172939 to
Driving Directions From 28.996644563231, -81.045888938859 to
To prevent fires, improve dryer efficiency, and extend the life of your dryer.
At least once a year, but more often if you have pets, a large family, or notice signs like long drying times.
Clothes take longer to dry, clothes are unusually hot after a cycle, the outside vent flap doesnt open fully, or a burning smell is present.
It typically costs between $80 and $200 depending on the complexity and length of the vent.